Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Lessons learned from the process focusing on achieving the state of cold shutdown of Fukushima Daiichi Nuclear Power Plant Accident

Yoshizawa, Atsufumi*; Oba, Kyoko; Kitamura, Masaharu*

Ningen Kogaku, 54(3), p.124 - 134, 2018/06

Fukushima Daiichi Nuclear Power Plant caused a severe accident which released a large amount of radioactivity triggered by the Great East Japan Earthquake. The existing investigation reports of the accident prepared by several institutions pay attention only to the process which caused the accident but not much to the accident mitigation or the recovery process. This study focused on Unit 3 of Fukushima Daiichi Nuclear Power Plant, including its recovery process from the accident. Based on the public data, the time sequences for the recovery process between the accident occurrence and the state of cold shutdown were classified. Then, the groups of actions were sorted out in terms of ergonomics viewpoint. The important responses in the recovery process were identified and analyzed referring to the m-SHEL model. As a result, new lessons were learned from the accident case regarding the actions required for recovering from the accident.

Journal Articles

Study on improving safety by applying Safety-II concept based on accident responding analysis for Fukushima Daiichi Nuclear Power Plant

Yoshizawa, Atsufumi*; Oba, Kyoko; Kitamura, Masaharu*

Ningen Kogaku, 54(1), p.1 - 13, 2018/02

AA2017-0637.pdf:1.46MB

The two approaches as the concepts to ensure safety of the complicated socio-technical systems have been proposed by Hollnagel. They are the safety concepts called "Safety-I" to reduce risks and "Safety-II" to expand successes. The resilience engineering is suggested as the methodology to achieve Safety-II. The study analyzes the recovery of the water injection of Unit 3 based on the resilience engineering, focusing on the fact that preventing further progress of the accident case in Fukushima Daiichi Nuclear Power Plant which has been evaluated for extracting risk factors. Based on those results, the study has clarified the method of learning to enhance safety which has a different view from existing accident investigation.

2 (Records 1-2 displayed on this page)
  • 1